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One-dimensional problems of plane plastic wave reflection were examined in a number 

of papers [l to 121. Nevertheless, the problem cannot be considered exhausted. Even in 
the comparatively simple case of explosive loading and propagation in the shock wave 

regime there are unsolved problems. Published papers either contain solutions based on 

the simplest approximation of the compression relationship, or lead to complex analytical 
descriptions from which sometimes no conclusions are drawn. Numerical methods are 

also little developed in this area. 
Some general properties of the reflection problem are studied below under the assump- 

tion of rigid unloading. The nature of phenomena is also investigated on the basis of 

numerical solutions. 

In connection with this it turned out that the a priori assumption, made by many authors 
including papers [l to 31 about unloading taking place in the reflected wave region, is in 
general mistaken. It is true that errors arising from this mistake are usually small, In 

particular, if the compression relationship is linear, the hypothesis of unloading is justified. 

An influence of the nature of unloading on this effect undoubtedly exists. This influence 
is not examined in this paper. 

The influence on propagation of a reflected wave due to a boundary layer with a given 

stress is investigated. The reflected wave begins to “feel” the external loading immedi- 
ately after the start of reflection. As is brought out in this paper, the influence is small 

at first, but it increases gradually. reaches a determining value and finally leads to the 
annihilation of the shock wave which can never reach the boundary plane with the excep- 
tion of the case of a stationary wave. It is proved here that this fact, noted for particular 

cases in [6. 7 and 111, is general in nature. In papers fl to 31 the problem of reflection 
was solved without taking the boundary plane into consideration. It is shown here that 
such a solution has a limited character and with accuracy to small terms of second order 
describes the asymptotic behavior of the phenomenon at instants near the beginning of 
reflection. Reflection was investigated earlier in papers [5 to 7 and 121 taking into ac- 
count the boundary plane for simple compression relationships. 

1. Two media, the first of which fills a plane-parallel layer and second a half-space, 
are in contact along the plane. We shall examine one-dimensional plane motions polar- 
ized perpendicular to this plane. The uniaxial compression diagram of the first medium 

is assumed to have the form presented in Fig. 1. The regime of shock waves is investi- 
gated below. A working region, which is assumed to be concave upward, above point A 
corresponds to this regime. Experimental facts show compressibility of solid media (soils, 
metals and others) at quite high pressures. Therefore the presence of a vertical asymptote 
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is not assumed in the compression diagram, Unloading and repeated loading occur with 

conservation of particle density, The second medium is either plastic and is then de- 
scribed by an analogous compression diagram, or linearly elastic. The equations of the 
working part of these diagrams will be written in the form 

u 

Fig. 1 

0 = %Yl (4, or0 > 0 (for the first medium) 

o = os”fs (4, ozO > 0 (for the second medium) 

Here Slot and t@ are constant coefficients having the dimen- 

sions of stress. 

We shall designate al = cl” / pr and a2 = ozo 1 pz, where 

p1 and pn are the densities of media. The stress of compression 
and deformation of compression are assumed to be positive. 

The motion will be described in Lagrangian coordinates h 

and 6 . In this case the axis b is oriented perpendicularly to 

the interface of media (u(h, ti) is the particle velocity). The 
motion is described by Eqs. 

$+p$=o, (1.1) 

Here CZ = 8( 0) is the inversion of the relationship tC = ff (C) , in particular C’(U) = 0 in 

the regime of unloading. In the region in which unloading takes place 8 = const , therefore 

we have there u = v (t), o (h, t) = - f?v’ (t) IL + C (1.2) 
On the shock wave two mechanical conservation conditions are satisfied 

u_ - r4 = (E_ - E+) 72* (t), o_ - CT+ = p (u- - v+) h’ (t) (1.3) 

quantities designated by the subscript plus refer to condition ahead of the front, quantities 

designated by the subscript minus to conditions behind the front: h(t) denotes the coor- 
dinate of the front of the shock wave. 

Let the interface of media be the plane h = ho . Assuming complete contact, we 
require continuity of stresses and displacements on this plane 

o1 (43l t) =; o, @at t), VI (h,, 9 = r.5 (&, t) (i-4) 

subscripts 1 and 2 designate the sides of the interface . 

2. Let the first medium fill the layer 0 shs ho , while an external stress Ue( t) is 
applied on the plane h = 0 . In this case 

(Jo (0) # 0, oo (f) > 0, o*’ (G < 0 for 6>0 

If U,(O) is sufficiently large, then from the boundary plane a shock rront will start to 

propagate behind which the particles will be in the condition of unloading. Designating 
the coordinate of the front by h J 8) we obtain the following equations p] for the 

description of the incident wave 

v = s*n*t, as2fr fa @,)I = e&t‘2, h*h*‘e* = &S QrJ (z) dz, h, (0) = 0 (2.1) 
u 

If the second medium is plastic, then under the condition that the wave incident on the 
interface is sufficiently intense a shock wave will propagate also in the second medium. 

If the second medium is ideally elastic, we obtain for the particle velocity and stress 
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(2.2) 

Here I/( $) denotes vf fi)= U&h , ti) , while ao is the velocity of the elastic wave 
in the second medium. 

3. Let us assume that the second medium in some respect is more rigid than the first 

(see Section 5 below). In such a case a reflected shock wave will start to propagate from 
the interface in the opposite direction. The layer 0 shr&, is divided by this wave into 

G,@ r 
No a priori assumptions whatsoever are made with 

respect to the regime in region 1. In region 3 the load- 
Fig. 2 ing and unloading of particles takes place with conserva- 

tion of density: ahead of the reflected wave front that 
stress U,(h) is attained which was the greatest for the corresponding particle in the inci- 
dent wave. This independent hypothesis is connected with the requirement of stability 
of the shock wave (see e.g. El]). Therefore we have in region 3 

us @P t) = vs (0, os (h, t) = - PPs’ (t) IL + oo (Q (3.1) 

Here the boundary condition on the plane !& = 0 is already taken into account, Since 

oa P&k, t) = ubr (hlJ, then f 

(3.2) 

The initial condition Ua( do) = U( to) follows from the theorem on the amount of 

motion for a mass belonging to region 3 at the instant 6, + 0 , Conditions (1.3) applied 
to the front of the reflected wave generate the following Eqs.: 

81 (hl,) 

u1- va 
-e(h1,) = h ' (3.3) 

1* 
The same conditions for the transmitted wave give 

1s [E: (h,,)l = vsh;, /ass, ea (&,) = us t’h& (3.4) 

The following boundary value problem arises for quasi-linear systems of first order 
equations of hyperbolic type. Two regions in the plane ?I,. C (Fig.2) are examined. 

ACZ, bounded by the straight line b = ho and line h = ?l.l J 6) 
,!?cB bounded by the straight lineh =ho and line ?l= )za,( 6) 

It is required to find functions 

Ul(12, t) and V1(?i, 6) in region ACD, d,(h, t) and U,(?z., t) in region,!?Ca 

and also functions Pl.1 J 6) and 71,s & 6 ) for 8 > to under the following conditions, 
Functions CJl(h. 6) and Vl(h,. t) satisfy Eqs. 

and boundary conditions (3.3) on the unknown line A 0. 
Functions Un(it, t) and Va(h,, 72) satisfy Eqs. 
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and boundary conditions (3.4) on the unknown line B C. 
For h = ho the desired functions are connected through boundary conditions (1.4) ; 

function U,( 6) is given by Eq. (3.2). Functions C(h) and U,(h) are assumed to be 
known from the previously obtained solution of the problem on the incident wave. It is 

natural that the solution of a similar problem in any kind of a simple form is possible 

only in quite special cases. 
However, without solving the problem completely we can draw some qualitative con- 

clusions about the properties of its solution. 

a) From conditions (3.3) we obtain 

h, 2 
i ) -= fl 181 (h*)l - f [e (hl*)l 

a1 81 (b,) - 8 (h,) 
(3.5) 

The right-hand side is a monotonously increasing function of Cl, for a fixed value of 

C . This follows from the fact that fl”( 8 ) > 0 in the investigated region of the diagram. 
The difference Cl(h) - c(h) is a monotonously increasing function of h . This follows 

from the presence of irreversible losses in the shock wave. Therefore 

~1 (4 - e W < ~1 &J - e (ho) = 4, 
As a result we have estimates for the velocity of the front ofthe reflected wave 

fl’ LE (h,,)] < (%) < fl [e (0) + A01 - fl P (O)J = c 
Ao 

(3.6) 

We can assume in an approximation as it was done in p] that 

hi, - = - l/r’ le (h*)l 
a1 

For the time of wave propagation nom the interface to the particle with a coordinate 

%. we obtain ho 

(hl, <ho) 

If the incident wave continued to propagate. at t > to , without encountering the inter- 

.ace.. we would have for it “. 
‘h dh 

(4 > ho) 

Eliminating t we obtain directly an approximate relationship between hl, and h. 
(see Eq. (2.5) in PI). 

b) If the incident wave is nonstationary, the reflected shock wave cannot reach the 
interface ; it is exhausted before it reaches this boundary. We note that ‘0120 , for 

hl,shsh,. 
In fact 
av1 
ah= 

-dl (al)a$<O, 2 =- e’2 (an)2<0, VI* = e2&& > 0 

Since U1 = 7J, for h = ho the inequality U1 > 0 follows from here. If the reflection 
takes place from a rigid wall, then U,E 0 . In Eq. (3.2) we assume hl. as the variable 

of integration. Then 

ua @) = v (to) - $- 1 
ho ~b (h) - 00 It @)_I dk 

11,. 78 I hi* I 
Since 
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/ Ia;, 1 < aC, QI, (h) - 50 [t @)I > Qb (ho) - 60 (to) 

Taken over the interval 0 to h 
‘ha. 

c , the integral in this equation is divergent; it follows 
from this that the difference U1 - U, is initially negative, this follows from (3.3), and 

becomes zero before the reflected wave reaches the boundary plane 7~ = 0 . The shock 
wave ceases to exist at the same instant. The layer 0 5 ?L <ho “hardens” and its stres- 

sed condition subsequently follows the pattern of change of external stress. 
c) For the incident wave the following relationship is applicable 

dv 

dt=- 
3 ~~,, I) - so (t) 

For the “precursor” of the reflected wave we hive (3.2). From this it follows that 

K%,t~tO=p~ ) 
dva 

However, in addition to this 
-5- t-t0 

(&* = (U&t 
or 

us (t) = u (to) + v’ (t.);t - to) ; 0 l(t - t,y1 (3.7j 

In other words, in the beginning of the reflection the field of velocities of the “precur- 

sor” coincides with the velocity field of the incident wave with accuracy to small terms 
of second order (with respect to time). In this connection, speaking about the incident 
wave, we examine its motion which would take place in the absence of the interface. 

4. The incorrectness of the hypothesis that in the reflected and refracted waves unload- 

ing begins immediately after the start of reflection can be shown under the following 

condition 11 (eo) 

eo< 

fl (e) - fl (eo) 

e - e. (e0 < e) (4.9) 

which is characteristic for the regime of shock waves and is applicable in the upward 
concave region of the compression diagram. 

The proof will be made starting with the opposite assumption that the unloading hypo- 

thesis applies. 

If the second medium is also plastic, then 

vr (h, t) = vi (ho, t) = I/ (t), us (h, t) = us (ho, t) = v(t) (4.2) 

It remains to satisfy four conditions (3.3) and (3.4) on the shock waves and the first 

condition (1.4) on the plane of contact. For the determination of five functions ei (h), 
jzi* (t), v (t), E2 (h) and h,,(t) we obtain five Eqs. 

11 (e1 (h,,)) - f (E (h,,)) = ?-III.?-- , 
al2 

El (IZl*) - E (la,,) = yf 
1* 

flh(h*)) f 
v’ (h, - b,) __ pza2 Vh,S 

a? --2 plal a2 
(4.3) 

I 

h* = fQf2 l&2 (h,,)), v = Ez(hz*) &* 

If the second medium is elastic, the last two Eqs. of the system (4.3) disappear and 
the third takes the form 

fi (Ei (hi,)) + “’ ‘“h’,a ho) = -=& 
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(4.9) are replaced correspondingly by 

I1 (810) = +y$ V”, el’tl’ (&IO) fV’h1’= ;z V’ 

In connection with this the last two Eqs. disappear in (4.8) and also in (4.9). Let us 
turn to system (4.9). From the last two Eqs. we can find the quantity hl: 

h2” = koV’, esofz’ (830) - fa (e30) 

k” = 2e30 Ie30fl’ (e30) + 13 (WI ’ 
/2bkOl6f 

and as a result the third Eq. in system (4.9) takes the form 

El’fl’ (&IO) + Tr’h,’ = CV’ (c > 9) (4.10) 

Here 

1 

[(P%/Pl) G%?al -t 1) -t 11 hi, if the second medium is plastic 
c= 

p3a3 I pm if the second medium is elastic 

For the determination of unknown coefficients 61’, hl// and I/’ in both cases a system 

of equations consisting of the first two Eqs. (4.9) and Eq. (4.10) can be used. The deter- 

minant A of this system is 

A = - 2 (eio - 60) ((c - hi’) [hi” + fr’ (eia) I - 2hl’fl’ (~10)) < 0 

Consequently, the equations, can be solved and we obtain for V’ 
V, = _ 4fl’ (el0) e0 VI (el0) - fl (e0)l - f (e0) (el0 - e0) 

A ~0f1’ (e0) + f (e0) 

From this it is evident that V’ > 0 ; from (4.10) it follows that also cl’> 0. For the 
stress on the reflecting surface we have 

oi (ho, t) = o1 (ho, to) + plq2 c V’T i- . . . (4.11) 

Eq. (4.11) shows that in spite of the assumption about unloading the stress on the con- 

tact boundary increases. The stress on the shock wave and consequently in the entire 

region 1 also increases. This.analysis leaves the question open as to the character of the 

phenomenon in the case when the compression relationship in the first medium is linear 
under loading. If the second medium is elastic, the hypothesis of unloading is justified. 

Indeed, the incident wave is described in closed form t 

fl(E) = E, h,’ = a,, E(t) = --Q&- (r(t) = \ CA, (a) dr) (4.12) 
n’ 

For the reflected wave we obtain hi = - al and the third Eq. bf system (4.3) takes 

the form (t - to) V’ (t) + x,V (t) = F (t) Pod t) (4.13) 

F (t) = a1 E @to - t) + u3 (% Xl = P2U2 / Wl + 1 

Since X1 > 0 , it is necessary to integrate with the initial condition 1 V (to) 1 < + 00. 
We obtain 

V(1) = (t -to)+ f F(t) (1 - toy dTr (4.14) 
to 

Let function P( 7) be monotonously decreasing. In fact 
t 

qp,P (t) = I go--J t, + plalv (to) - s ‘I Pf 0 - 7) ‘2%; %)I - 60 w & 
0 

%PlF'(O = 
60 (t) '1 ao(2to - t) 

2t 
0-f 
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Since Uo( ti) decreases monotonously, F( ti) also decreases monotonously. If (4.14) 

is aansformed into the form 

V(l)= SLF(to+S(t--to))sXI-‘ds 

it becomes apparent that I/( $) d:creases together with U1(ho , 6). An analogous proof 
can be carried out in case when the second medium is plastic but linear under loading. 

6. Let us examine the particular case when the incident wave is stationary and has 

the shape of a step. Expansions (4.4) to (4.6) are reduced to their first terms and give 
an exact solution of the problem. In this case it turns out that the reflected and transmit- 

ted waves are also stationary. The problem is reduced to solution of system (4.8). The 

possibility of unique solution of this system is *also necessary for the justification of argu- 

ments in Section 4, since the representation of desired functions in the form of Expresslons 
(4.5) and (4.6) is based on this solution. First let us dwell on the case where the second 

medium is linear under loading. Then (4.8) is reduced to Eqs. 

f1 (elf,) - f (e,) = (v” - U%‘, (elm - %) h,’ = v” - v’, fI (EM) = v” (Pz%~PIQI) (5.2) 

Here a2 denotes the constant velocity of propagation of disturbances in the second 
medium. 

Let us introduce the notation 

x = 810 - PO, 1’ = /I (CIO) - / (C”), h,’ = - )/tg 

Eliminating P-V0 and &( 61~) from (5.1) we obtain 

x--l 
s = o” 

(Xof -@%)I/& ’ 
y_G” (x-1) Vtga 

- x0+ I/G 
(5.2) 

pan:! w2 

xo = -G- ’ %=Pla’ 
a0 (()) 

u” = 2 

alao 

rwh a=-iF 

Here a is the velocity of the incident shock wave at the instant of its collision with 

the interface . 
A descriptive geometrical interpretation of Eqs. (5.2) is presented in Fig. 3. The equa- 

tions give a parametric representation of line PQ in the system of coordinatesKY. It is 
easily verified that the line Pg represents a monotonously decreasing function the value 

ofwhichforU=ll/2 is &0(X-l)>O. Fora -+ 0 the function approaches zero. Conse- 
quently, there is in this case also only one intersection of curvepq with the diagram of 

f Y 
P /i /’ 

// 

LE 

compression Mfl. Knowing this point we find the 
desired elements of motion 

hl’= - VF, el0=e0+X, 

N ,’ 
r 

V” - u0 = - (q0 - eo) V&G 

4 This not only proves. the possibility of unique solu- 

tion of system (5.1) but also gives a method for nume- 

M p! --* rical determination of desired quantities. This method 
/I 

’ I 
X 

’ I 

can be improved through the application of a moving 

/ 
/ 

coordinate system xy on transparent paper on which 

& ; 
a family of PO lines can also be drawn. 

An important characteristic will be the coefficient 

Fig. 3 of reflection 
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In the formulation of the problem it was assumed that KS 1. Conditions under which 

this is materialized can now be pointed out. From (5.2) we obtain 

’ K= x0 -’ x I/tgr 

X0 +- J&G 
(3.3) 

The inequality K> 1 indicates, as we see, that 

%P% > Wl (5.4) 

in agreement with c’q where an approximate method was suggested for determination a . 
The proof for a unique solution of system (4. 8) can be extended at the expense of some 

complications to the case when the second medium is plastic with an arbitrary compres- 

sion relationship which is subject only to limitations of a general character. Let us 
assume that e-l& (c)/c is a nondecreasing function. Then we can prove hn’ as a 

function of v” determined by the following Eq. 

is also a nondecreasing function. The following estimates are valid 

Here azo is the velocity of propagation of small perturbations in the second medium. 

The first three Eqs. of system (4.8) can be written in the form (5.5) 

Y = (v” -VO) )/tg, .y = (ZP - V”) / J+&. (DO.- VO) v(/tg -4 9 = xoV”cp (VO) 

We shall assume again that the second medium is “more rigid” than the first in the 

sense that P2a3’ 1 ola > 1 (5.6) 

Then for a fixed value of a (0 f a < 1/z n) the third Eq, of system (5.5) determines 

the only value of V” on the section 0 < V” < v’. The reflection coefficient in this 

case turns out to be greater than one. This is most easily seen from Fig. 4 on which 0 c 

is the graphic representation of the right-hand side of the equation while the straight 

lines mn , fTl ‘n ’ and ?7l “n, ‘I represent the left-hand side for various fixed values of a . 
The point P is located below the curve OC , this follows from the inequality 

r.J”cp (VO) 
30 > !g>i 

This insures intersection in the region 0 c p < Uo . Eqs. 

as previously, give a parametric representation of the line in the XT plane. This line 

6 
shows a monotonously decreasing function since for a 

I??” 

K 

variation of a from *I7 to 0 the Icoordinate 

rn’ increases (this follows from the second Eq, of (5.5) ) , 
m while Y decreases. This is evident from the second 

n 
n’ 

Eq. of (.5.7). Therefore the line (5.7) has a single 

a Y’ point of intersection with the curve 
lJ* n- Y - fi (X 9 eo) - fl (eo) 

Fig. 4 which was to be proved. 
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For the reflection coefficient we obtain 

K = x0 + xcp (W vtg 
x0+ v-G@ >I ( q(Y”)> $$>i) 

6, For purposes of computing the quantitative aspect of effects for which the theory 

was presented in Sections 3 to 5. the numerical solution of the problem of reflection of 

a plastic wave was carried out. The case of reflection from a rigid wall was examined 

here. 

The working region of the law of compression was described by the function 
u = ~~a,%~. External stress in the function of time was given by 

Qo (l) = do (0) 
{ 

0 for t<O, t>8 

(1 - t / e)n for o<t<e 

The following quantities were nondimensional parameters of the problem 

Go (0) 4 h 
m, n, 6’= __ 

PIa12 
, s=-, ho=- 

h ho ’ 
For numerical computation’the region of propagation 0 5 ho 5 1 is devided into fl 

equal parts (fl = 50 was selected). Eqs. (8.1) of the incident wave is integrated nume- 

rically by Euler’s method. Since the desired functions change quite smoothly, this method 
gave sufficient accuracy. The reflected wave was computed by two methods. The first 

method was based on the hypothesis of unloading and was reduced to numerical integra- 

Fig. 5 

Fig. 6 

tion of the two Eqs. of system (4.3). 

At the same time a numerical solution was 
carried out for the correctly formulated prob- 
lem in which the unloading regime was not 
assumed in advance. The selection of the 
regime was accomplished in the process of 

calculation. Eqs. (1.1) were replaced by dif- 

ference equations. Boundary conditions were 
given on the reflecting wall V = 0 and on the 

shock wave. 
Below the results of calculations for the 

following three combinations of parameters 
are nresented 

0 e n n 

1 10” 1.1 2 

; 
10-s 100 2 
103 ;: 10 1 

Results of calculations for the first variant 

are presented in Fig. 5 where the following 
functions are given in their dependence on 
h : E: is curve AB ; ?z1’16’ is curve KL ; 
~3 is curve CD ; USlO is curve EFand 
h 10-l is curve GH. 

The rise in the propagation velocity with 

time and the increase of deformation stress on the shock wave may be noted. It was 
shown by the computation that between the shock wave and the wall an increase ofstress 
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takes place up to the moment of disappearance of the shock wave. The increase of these 

Values is quantitatively not large, namely, from the moment of reflection to the exhaus- 
tion of the shock wave its velocity of propagation increases approximately by 12% , the 
deformation by 5% and consequently the stress by 8% . The formal calculation based 

on the hypotpsis of unloading yields quite small differences, namely, it exagerates the 
value of hl, by 1% , and the value of 8 1 by 4% near the instant of wave extinction. 
The distribution of values of U and V between the reflecting wall and the shock wave 
differs very little from the result which followed from the hypothesis of unloading. In 

the latter case Q (h, $) = 0 (t) and V (h , 6) 5 0 must hold. In the correct calculation, 
the deviation of U(h, 6) from the constant value along the coordinate does not exceed 
2% , The value U(h, 6) does not exceed 0.13 V( to) . 

Results of calculations for variants 2 and 3 are shown in Fig.6 (the graphs for variant 
3 are shown dashed) in the form of curves giving the dependence on h for the following 

quantities a (-W), aa (A&J, e, (CD,), e12 (CD,), v, (E,F,), vs / m(EP9) 

Both these variants are characterized by external interaction which is more prolonged 

than in variant 1 . Th$s has the result that the reflected shock wave is exhausted later. 
Velocities h: and h le are not shown in Fig.6 because they change little during propa- 

gation. For variant 2 the increase in velocity of the reflected wave is here quite small ; 
it represents no more than 1%’ and in the following is replaced by a deceleration. The 
values hl: and cl computed from the correct theory and from the hypothesis of unload- 
ing practically do not differ (they agree with accuracy to four significant figures). In 
variant 2 immediately after reflection the loading regime begins which however is 

replaced in the following by unloading. This is presented in Fig. ‘7 in which this pheno- 
menon is shown in the plane of variables h /ho 
and t /8 . The line PO1 is the hodograph of the 

incident wave, Oil? of the reflected wave; the 

region ROIS is the region of loading, @?s is the 

region of unloading. The relative difference 

between the maximum and the minimum value 
of o(h , t) in this region represents less than 

0.5%. 
As a result we can form conclusions with regard 

Fig. 7 
to the phenomenon of reflection-refraction of 
plastic waves within the framework of the formu- 

lation of the problem accepted so far in case when the external loading has the nature 
of an explosive interaction, the unloading is assumed to be rigid and the coefficient of 

reflection is greater than unity. 
1) If the incident wave is nonstationary, the reticted shock wave does not reach the 

boundary plane on which the external pressure is applied. Extinction of the shock wave 
occurs the later, the closer the incident wave is to the stationary wave. 

2) Under quite general assumptions about compressibility relationships in both media, 
the system (4.8) of finite nonlinear equations, to which the problem of reflection-refrac- 

tion of a stationary wave is reduced, has a solution which is in this case unique for the 
assumed regime of K> 1 . Recommendations are made for graphic-analytical construc- 

tion of solution. 
3) At the start of reflection the velocity field of the precursor coincides with the 
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velocity field of the incident wave with accuracy to small quantities of second order 

(see Section 3, Eq. (3.7)). This is the basis of solution of the problem in Q to 31 where 
the effect of the boundary plane ?J = 0 was not taken into account (*). Such solutions 

naturally have limited significance as approximations for the initial stage after reflec- 

tion. They describe the phenomenon better for long waves than for short ones. However, 

these solutions give exactly the quantities related to the instant of collision of the inci- 

dent wave with the obstacle (see also [a] ). 
4) The generally accepted a priori hypothesis about the regime of unloading in the 

regionof the reflected wave is generally incorrect. Its incorrecmess was proved for the 

case when the compressibility diagram of the first medium is upward concave in the 

working region, while there is no special restriction placed on the compresSibility rela- 
tionship of the second medium. 

5) If the stress diagrams in the first and second medium are linear, a solution exists 

which is in agreement with the unloading hypothesis. 

6) In the determination of desired functions errors which are introduced because of 
incorrectness of the problem with the unloading hypothesis, turn out to be quantitatively 
quite small, This is demonstrated by numerical calculation of a series of examples with 

reflection from a rigid wall. These calculations were carried out for different combina- 

tions of input parameters. Two such examples are presenred in this l?aper in Section 6, 
7) We note that reflection from a nonstationary barrier at the boundary of two media 

was not examined here. In this case the character of reflection is different and requires 

a different approach for the analysis of the phenomenon in its initial stage. llowever. 
the two limiting variants when the mass of the barrier becomes zero or infinite are 
described by the present theory. This forces us to expect that in the reflection from a 
nonstationary barrier cases may be encountered which are contradictory to the hypothesis 
of unloading. 

The question of how one should reasonably formulate problems on reflection of plastic 
waves cannot be.examined separately from the purpose and the type of materials for 

which the problem is formulated. To-date such problems have been studied in connec- 
tion with the needs of construction technology. As a rule in these cases experimental 
accuracy and the expected accuracy of answers are much rougher than those fine devia- 

tions which were discovered by our calculations. Many initial assumptions about rigidity 

of unloading, about approximation of the compressibility diagram and others are made 
by authors with great ease. This lack of concern is justified by the absence of reliable 
and stable data on properties of many real materials. Against this background the actual 

errors introduced by the incorrectness of the unloading hypothesis appear of small signi- 

ficance. Therefore, calculations of reflection and refraction based on the hypothesis of 
unloading, and consequently incorrect in principle, should be accepted as satisfactory 

for the solution of many principal problems. 

l ) In [l] it ‘was assumed that in all instances of time the velocity field of the precursor 
coincides with the veloci field of the extended incident wave. This is an independent 
assumption in spite of an 2; correct reference to continuity of displacements (see e.g. 

PI 1. 
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